Robust Design of Sensors and Functions in Vehicular Safety

Christoph Stöckle and Wolfgang Utschick
Professur für Methoden der Signalverarbeitung (MSV)

Motivation

- sensors:
 - measure quantities like distances, velocities, accelerations, etc.
 - serve perception of environment of vehicle
- (vehicular safety) function:
 - uses measurements of sensors
 - interprets driving situation
 - triggers actions in dangerous situations like automatic emergency braking (AEB)
- problem: measurements of sensors are erroneous
- goal: function meets customer requirements in a robust manner despite measurement errors

Problem Formulation

- How must function be designed such that it meets customer requirements in a robust manner despite measurement errors of given sensors?
- Which requirements must sensors meet such that given function meets customer requirements in a robust manner despite their measurement errors?

Mathematical Model for Design of AEB System

- state: $x[n] = [x_0[n] \cdots x_m[n]]$
- measurement: $y[n] = [y_0[n] \cdots y_m[n]]$
- obtained by sensors with sampling rate s at $t_n = nT_s$, $n \in \mathbb{N}_0$
- measured distance: $y_0[n] = x_0[n] + e_0[n]$, i.i.d. $e_0[n] \sim \mathcal{N}(0, \sigma_0^2)$
- measured relative velocity: $y_1[n] = y_0[n]$
- predicted time-to-collision (TTC): $\tau_{\text{TTC}}[n] = -\frac{y_1[n]}{a[n]}

- AEB intervention
 - triggered by function at time instant t_n if $\tau_{\text{TTC}}[n] \leq r$ with threshold r
 - reduces velocity of ego vehicle with constant deceleration a

Joint Function and Sensor Design for AEB System

$$f_{\text{opt}} = \arg \max_{\sigma \in \mathbb{R}^n_{+}} \text{subject to } P(f_{\text{min}} \leq x_{\text{end}} \leq f_{\text{max}}) \geq

\text{probability that distance x_{end} from object after AEB intervention when relative velocity vanishes lies in acceptable interval $[f_{\text{min}}, f_{\text{max}}]$ (quality measure)}

- f_{min}: required minimum probability for fulfilling specification $x_{\text{end}} \leq f_{\text{max}}$
- f_{max}: maximal tolerable standard deviation of sensor measurement errors
- f_{opt}: optimal threshold of function

Conclusion

- new methodology for robust design of AEB system considering sensor measurement errors
- future work: transfer of developed design methodology to further vehicular safety systems

References